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Two new codes for computing the eigenvalues and eigenvectors of a complex
Hessenberg matrix are presented. The first computes the Schur decomposition of a
complex Hessenberg matrix, while the second computes the eigenvectors of a com-
plex upper triangular matrix. These subprograms have been developed to fill a void
in the ScaLAPACK library. Now, the capability exists to compute the eigenvalues
and eigenvectors of dense complex matrices using a parallel QR algorithm.

A parallel complex Schur decomposition routine was developed based on the
real Schur decomposition routine provided in ScaLAPACK. The real code was ap-
propriately modified to make it work with complex arithmetic as well as to make
the algorithm implement a complex multiple bulge QR algorithm. This also re-
quired the development of new auxiliary routines that perform essential operations
in the complex Schur decomposition, and that will provide additional linear algebra
computation capability to the ScaLAPACK community.

A parallel eigenvector calculation routine was also developed. This routine can
take the output from the parallel Schur decomposition subprogram and compute
the eigenvectors for the original complex Hessenberg matrix.

This work also presents the parallelization of two application codes that require
the eigenvalues and eigenvectors of dense complex matrices. The first is from the



area of electromagnetics. In particular, the application calculates radiation from a
long antenna situated on a photonic crystal substrate. Most of the computational
effort involves repetitious calculation of eigenvalues and eigenvectors. The new
parallel solvers significantly reduce the wallclock time.

The second application is from the area of magnetohydrodynamics in the study
of systems with combined flow and magnetic shears. For example, this application
is used to study the formation and acceleration of slow solar wind and the accompa-
nying coronal streamer magnetic field. This requires the calculation of eigenvalues
of dense complex matrices. In serial, as above, more than 90% of the computational
effort is spent computing eigenvalues.
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1 Introduction

In this work, two new parallel codes for computing the eigenvalues and eigenvec-
tors of a complex Hessenberg matrix are discussed. The first computes the Schur
decomposition of a complex Hessenberg matrix, while the second computes the left
and/or right eigenvectors of a complex upper triangular matrix.

The conversion of the ScaLAPACK [3] code PDLAHQR to a complex implemen-
tation is covered. PDLAHQR computes the Schur decomposition of a real matrix in
parallel using a multiple bulge QR algorithm. Therefore, this new implementa-
tion, called PZLAHQR, computes the Schur decomposition of a complex matrix in
parallel using a multiple bulge strategy. In addition, a parallel code was devel-
oped to compute the left and/or right eigenvectors of an upper triangular matrix.
This code is denoted as PZTREVC. Since the output from PZLAHQR is standard Schur
form, PZLAHQR and PZTREVC can be used in conjunction with existing ScaLAPACK
routines to compute eigenvalues and eigenvectors of a general complex matrix in
parallel. The names of these new codes follow the ScaLAPACK convention.

Furthermore, the parallelization of two application codes with the new solvers
that require the computation of eigenvalues and eigenvectors of complex dense ma-
trices is presented. The first is from the area of electromagnetics, while the second is
from the area of magnetohydrodynamics. The new parallel solvers have significantly
reduced the wallclock time for runs of each code.

In Section 2, highlights of the parallel nonsymmetric QR algorithm are pre-
sented from [12]. The conversion of the real parallel nonsymmetric QR algorithm
to complex arithmetic is discussed in Section 3. In Section 4, a parallel complex
eigenvector routine is briefly presented. Scalability results for PZLAHQR and two case
studies of converting a serial code to parallel with ScaLAPACK and the new solver
routines discussed here are presented in Section 5. Concluding remarks are given
in Section 6.

2 Parallel QR Algorithm

A parallel nonsymmetric QR algorithm for real matrices was implemented in the
code PDLAHQR as part of ScaLAPACK. The algorithm used in PDLAHQR is similar to
the LAPACK [1] routine DLAHQR. However, unlike DLAHQR, instead of sending one
double-shift through the largest unreduced submatrix, this algorithm sends multi-
ple double-shifts. This allows all bulges to carry out up-to-date shifts and spaces
them apart so that there can be parallelism across several processor row/columns.
Another critical difference is that this algorithm applies multiple double-shifts in a
block fashion, as opposed to DLAHQR, which applies one double-shift at a time.

This is the approach taken in [12] where M shifts are obtained from the lower
M x M submatrix, where M is a fairly large even number (say 40), and used to
form S = M/2 bulges of degree two and chase them one after the other down the
subdiagonal in parallel. Key observations pertaining to parallelization discussed by
Henry, Watkins, and Dongarra [12] are as follows:

e The most critical difference between serial and parallel implementations of
the QR algorithm is that the number of bulges must be chosen to keep the



processors busy. The bulges must be separated by at least a block, and re-
main synchronized, to ensure that each row/column of processors remains
busy. Usually the block size must be large; otherwise there will be too much
boundary communication.

e The overall logic can be kept similar to the well-tested QR algorithm. The
super-iteration can be implemented to complete before new shifts are deter-
mined and another super-iteration is begun. Information about the “current”
unreduced submatrix must remain global to all nodes.

e The Householder transforms are of size 3, which means they are specified
by sending 3 data items. The latency associated with sending many such
small messages would be ruinous, so the information from several (e.g., 30)
Householder transformations is bundled in each message.

o If many bulges are being chased simultaneously, there may be several bulges
per row or column of processors. In that case, latency can be reduced further
by combining the information from all bulges in a given row or column into a
single message.

3 Conversion of PDLAHQR to PZLAHQR

The original need to develop a parallel complex Schur decomposition routine arose
during the migration of a researcher’s code from a scalar to parallel platform. The
most time-consuming computational task in this code was computing the full eigen-
decomposition of a dense complex matrix. Without the time or resources to develop
an entire parallel code from start to finish, the decision was made to convert the
existing ScaLAPACK code PDLAHQR to a complex implementation. This would have
the drawback of not developing a parallel code based on the multiple single-shift
strategy usually associated with complex QR algorithms. Counterparts to the aux-
iliary codes developed with PDLAHQR had to be developed, as well as developing
a serial complex double-shift QR algorithm counterpart ZLAHQR2 to the LAPACK
code DLAHQR. LAPACK already has a routine named ZLAHQR that employs a single-
shift strategy.

Some of the new routines needed in the development of PZLAHQR are listed
next, each with a brief description. For more details, see [11].

ZLAHQR2 Serial complex double-shift QR algorithm, implemented by converting the
LAPACK single-shift routine ZLAHQR to a double-shift strategy. The double-
shift strategy only reduces the Hessenberg matrix to quasi-triangular form
with 2 x 2 blocks on the diagonal; thus these blocks must be further reduced
to triangular form.

ZLANV2 Computes the Schur decomposition of 2 x 2 blocks, i.e.,

FHEEIthIEE

w8l



This routine computes a rotator matrix (composed of cosine ¢ and sine s
values), which needs to be applied to the corresponding rows and columns of
the Hessenberg matrix.

PZROT Applies in parallel a rotator matrix to two rows or columns of a distributed
matrix.

PZLAHQR Parallel multiple-bulge QR algorithm implemented by converting the ScaL.A-
PACK routine PDLAHQR to complex format. This routine requires the use of
ZLAHQR or ZLAHQR2, ZLANV2, and PZROT.

4 Eigenvector Calculation

PZLAHQR computes the Schur form of a complex Hessenberg matrix. Although the
eigenvalues are on the diagonal of the upper triangular matrix, the Schur decom-
position does not produce the eigenvectors. Thus, additional calculations must be
performed to compute the eigenvectors of the upper triangular matrix produced by
PZLAHQR. The eigenvector matrix can then be postmultiplied by the unitary ma-
trix obtained in the Schur decomposition to give the eigenvectors of the original
Hessenberg matrix.

Another parallel routine was developed, PZTREVC, that computes some or all
left and/or right eigenvectors of a complex upper triangular matrix, i.e.,

Tr =\ and/or 2T = My

where T is upper triangular, z and y are right and left eigenvectors, respectively,
and X is an eigenvalue. Together, PZLAHQR and PZTREVC can be used to compute the
eigenvalues and eigenvectors of a complex Hessenberg matrix. Since ScaLAPACK
already has a routine to reduce a nonsymmetric complex matrix to Hessenberg form,
one can now compute the eigendecomposition of a complex nonsymmetric matrix
in parallel.

The right eigenvectors are computed via backward substitution using the
PBLAS. A similar technique is used to compute the left eigenvectors using forward
substitution routines from the PBLAS.

Note that this code may give inaccurate results if the eigenvectors are ill-
conditioned. Furthermore, overflow may occur. Overflow can be controlled by the
use of scaling. For PZTREVC, an auxiliary solver PZLATRS was implemented to control
scaling in the computation of the eigenvectors. However, the parallel implementa-
tion of PZLATRS does not scale well and should only be used when necessary.

5 Numerical Results

Numerical tests were carried out on an SGI Origin 2000 and IBM Power3 SMP at
the U.S. Army Engineer Research and Development Center (ERDC) Major Shared
Resource Center (MSRC). See Table 1 for more information on each machine.

All solver routines are implemented in Fortran 77, except for PZROT, which
is coded in C. All routines were compiled using optimization flags -03 and -03



Table 1. Parallel computing platforms at the ERDC MSRC used for testing.

Processor Mflops/s Procs Number Peak
Machine ‘ Speed (MHz) per proc per node Nodes Gflops/s
SGI Origin 2000 195 390 2 64 49.9
IBM Power3 SMP ‘ 222 888 8¢ 64 454.6

%Current hardware limitation of a maximum of four MPI processes per node.

-garch=pwr3 -qtune=pwr3 -gmaxmem=-1 for the SGI Origin 2000 and the IBM
Power3d SMP, respectively. The environment variable MP_SHARED MEMORY was set to
YES for runs on the IBM Power3 SMP. All tests were run during normal operation
hours in a nondedicated environment.

5.1 Scaled Problem Size Scalability of PZLAHQR

The scalability of PZLAHQR is first investigated by calculating speedup and efficiency
ratings based on the computed aggregate megaflop rate as the problem size and the
number of processors increase. Assume that the flop count to compute the Schur
decomposition is 18 N3, where N is the order of the matrix [3].

Let efficiency with respect to megaflop rate be defined as

— Mp
~ PM,

Er

where M), is the megaflop rate on P processors and M; is the serial megaflop rate.
The speedup with respect to megaflop rate

Sr = PEF

is the factor by which execution time is reduced on P processors.

In Table 2, the time in seconds to compute the Schur decomposition for increas-
ing larger problems and larger processor grids is shown. Notice that the efficiency
ratings are much higher for the processor grids that are evenly divisible by four in
Table 2. In fact, the megaflop rate per processor for the processor grids divisible
by four stays approximately constant around 47. The IBM Power3 SMP currently
has a maximum of 4 MPI processes per node, and intranode messages are commu-
nicated significantly faster than internode messages. For processor grids not evenly
divisible by four, the batch system must be set to either use less MPI processes per
node to balance the number of processes across nodes or to use four MPI processes
per node with one node using less than four MPI processes. For example, with a
3 x 3 processor grid, an efficiency of 0.73 is obtained if the machine is set to use
three MPI processes on three nodes instead of a four-four-one setup on three nodes
that had an efficiency of 0.57 (as shown in Table 2). Thus, the variable efficiencies
are a by-product of the hardware, not the code.



Table 2. Speedups and efficiencies based on the megaflop rate for the IBM

Power8 SMP.

Speedups and efficiencies for IBM Power3 SMP

Proc. grid IBM Power3 SMP

mp X np N Time Mflops/s Sr Ep
1x1 2000 | 2577 55.9 1.0 1.00
2 x 2 4000 | 5975 192.8 3.5 0.86
3 x3 6000 | 13550 286.9 5.1 0.57
4 x4 8000 | 12526 735.8 13.2  0.82
5x5 10000 | 23712 759.1 13.6 0.54
6 x 6 12000 | 18078  1720.4 30.8 0.85
8 x 8 16000 | 24471  3012.9 53.9 0.84
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Figure 1. Time in seconds to compute Schur decomposition of a complex
Hessenberg matriz on an IBM Power3 SMP using increasing larger processor grids

as the order of the matriz increases.

The data in Table 2 are also displayed in Figure 5.1 and clearly show linear
scalability for processor grids divisible by four.

5.2 Electromagnetics case study

Properties of electronic components are intimately related to the behavior of elec-
trons in a periodic crystalline structure. Similarly, photons propagating in a periodic



structure can exhibit behavior analogous to an electron propagating in an electronic
crystal. Typically, there can be one or more gaps in the range of allowable energy
an electron propagating in a semiconductor crystal can have. Analogous band gaps
can occur for the allowable energies of photons propagating in a periodic dielectric
structure, i.e., photonic crystal (PC). The rest of this subsection summarizes the
work in [7] where numerical calculation of radiation from a long antenna situated
on a photonic crystal substrate was studied. It is this application where the new
parallel eigenvalue solvers were first applied.

Theoretical background

The theory portion of this work involves solving Maxwell’s equations using perfectly
matched layer (PML) boundary conditions, the R-matrix propagator algorithm, and
a finite-difference frequency-domain modal-expansion approach to calculate antenna
radiation. The antenna is mounted adjacent to a finite-sized PC substrate and is
driven at frequencies below, within, and above the band gap associated with an
infinite PC. The PC and antenna are invariant along one dimension.

A photonic crystal (PC) and antenna structure is modeled as shown in Fig-
ure 5.2. The horizontal lines in Figure 5.2, separating regions of the PC, indicate
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Figure 2. Photonic crystal and antenna structure.

regions that are z invariant and are called layers henceforth. The problem analyzed
here is two-dimensional, and the PC structure consists of a truncated square array
of dielectric rods.

In the context of a finite-difference time-domain approach to solve Maxwell’s
equations, the analogous equations to Berenger’s [2] work are equivalent to

OEy(z,2) _ iw
P = c,uz(:v,z)Bz(x,z)



ex(x,2) 8 c OE,(z,2)] _4r
t (2.2 07 liwpa@,2) 0z | < Jy(z, 2)

where

€x(z,2) = €(x, 2) + dmio, (z, 2) w, bz, 2) =1+ 4dmic)(z, 2) Jw,

€:(z,2) = €(z, 2) + dmio,(z, 2) Jw, pz(z,2) =1+ 4mwioy(z,2) /w,

Jy(z,z) is the antenna current, E(z, z) is the electric field, and B(z, z) is the mag-
netic field. Note that the antenna current is written as a function of  and z, but
it is assumed the current is zero everywhere outside the antenna cross section and
uniform within the cross section.

Assuming that material parameters (permittivity and PML conductivity) are
independent of z, and noting that certain variables are zero outside of any PML
region, the two equations can be combined into a second-order differential equation.
Using centered finite-differences to approximate the z derivatives, there are N cou-
pled differential equations for each z-invariant layer. All N equations for a given
layer may be concisely written in matrix form as

0%E(z)

022
where M is an N x N matrix. Explicit dependence on z has been omitted as well
as y component notation in Equation (1). The solution for the fields in a layer is

a straightforward diagonalization of M as S™'MS = A2, which yields the modal
solutions

= ME(2) — 4itwJ/c? 1)

diTw
2

E(z) = S (exp(Az)Cy + exp(—A2)C_) + M~ (2)

B(z) = (L—C) SA(exp(Az)Cy — exp(—A2)C-) 3)

where C are vectors of constants. Clearly, N eigenvalues and eigenvectors must be
computed for each layer of the PC. The root eigenvalues consist of pairs +A where
the +A and —A are associated with solutions which are “upward” or “downward”
propagating within a layer.

Equations (2) and (3) only yield solutions within a layer. The R-matrix algo-
rithm provides a numerically stable algorithm to give a relationship between field
solutions across one or more layer boundaries [8, 10, 9]. The numerics of this
problem include linear equation solutions, matrix-matrix multiplies, matrix-vector
multiplies, and calculating eigenvectors and eigenvalues. Most of the computational
effort involves repetitious calculation of eigenvectors and eigenvalues.

Scalability tests

Consider the PC shown in Figure 5.2. All material media are assumed to be non-
dispersive for all frequencies with the permittivity of the dielectric rods €, = (9,0),



the background medium €, = (1,0), and the wire antenna €,, = (—100,30). The
superstrate and substrate regions above and below the PC have permittivity (1,0).
The side dimension of the square rods is given by the fill factor of 0.156 or w =
0.395a. The PC consists of 37 periods in the z direction or L, = 37a and 6 whole
periods in the z direction or L, = 6a. The dimensions of the rectangular antenna
are width 0.5a and height 0.2a.

In the numerical results, the number of digitization points for the z dimension
is N = 701 or 1401, which yields a spatial resolution of Az = 37a/N = 0.053a or
0.0265a. The PML region on each side of the PC consists of 30 layers for a total
thickness of 30Az. Within these layers, 0, (z) = e(z)ok(z), and the conductivity is
quadratically increased with depth into the PML layers region.

Table 3 shows the results of parallelizing the electromagnetics code with
ScaLAPACK and with the newly developed eigenvalue and eigenvector solvers. As

Table 3. Observed wallclock times for the electromagnetics application.

Execution time in hours
Number of processors
N 1 4 9 16
701 1.5 04 02 -
1401 | > 10 2.7 1.5 0.9

can be seen in Table 3, the parallelized code has delivered greatly reduced wallclock
times for this application. For 4 processors, an efficiency of about 0.9 is observed,
while for larger numbers of processors an efficiency of approximately 0.7 is observed.

5.3 Magnetohydrodynamics case study

Many important magnetohydrodynamic (MHD) systems contain shear in both the
velocity and magnetic field. An important situation occurs when both shears are in
the same location in a slab geometry [4, 5] where this configuration is termed the
plane current-vortex sheet.

Most of the theoretical research on the plane current-vortex sheet has been
concerned with the incompressible problem. The assumption of incompressibility
is extremely useful for making the problem more tractable. This work pertains to
an investigation into the compressible plane current-vortex sheet. The compressible
analog of the well-studied incompressible problem is treated with a spatially uniform
zeroth-order mass density and temperature, stressing how variations in the sonic
Mach number (M) change the stability properties. The equations for the problem
are briefly developed to show the underlying numerical calculations in the code.
This is followed by a short description of the parallel implementation and then
results of a scalability analysis.



Theoretical background

The following theoretical derivation comes from the work in [6] where the com-
pressible plane current-vortex sheet was studied. The nonlinear partial differential
equations that govern the behavior of a three-dimensional, compressible, dissipative
magnetofluid in a dimensionless form are as follows

% =V (pu), a
p(%+v-Vu)=—#VP+A2JXB+}%V-C, (5)
p(%—f +v-VT> - 77_1 (%—f +u-vp) +%v-(u(T)VT)

2 = N6 + (- DTV x B, (6)

%—f:vaxB—éVxn(T)VxB, (7

V-B=0 (8)

where p(x,t) is the mass density, v(z,t) = (u, v, w) is the flow velocity, P(z,t) is the
thermal pressure, B(z,t) = (B, By, B;) is the magnetic induction field, T'(z,t) is
the plasma temperature, (;; = pes; + (Aexr — P), €55 = 5(0;v; + O;v;) is the viscous
stress tensor, and < is the adiabatic ratio.

The Equations (4)-(8) can be linearized as shown in [6], but will not be shown
here for brevity. To solve the resulting equations, the Spectral Compressible Lin-
ear Stability (SPECLS) code [13], a Chebyshev collocation code, was modified to
include magnetic effects. The modified version is denoted as MHDLA. The most
time-consuming task in MHDLA is the computation of eigenvalues of a complex dense
matrix. For serial runs of this code, more than 90% of the wallclock time is spent
computing eigenvalues. Thus, it was apparent that the new parallel eigenvalue
solver PZLAHQR could be used to significantly reduce wallclock times.

However, the entire code was not parallelized, only the routine where the
eigenvalue calculations are performed. Although perfect linear speedup cannot be
expected, use of the new parallel solver is expected to dramatically reduce wallclock
times. Additionally, a second routine with some basic linear algebra tasks will be
parallelized in the future.

Scalability tests

An example of a physical application is the formation and acceleration of the slow
solar wind where the incipient wind is modeled as a wake and the accompany-
ing coronal streamer magnetic field is modeled as a simple sheared magnetic field.
The numerical tests were obtained using the MHDLA code to study the compressible
problem with combined flow and magnetic shears.

In Table 4, the results of running the MHDLA code for varying numbers of
Chebyshev polynomials with the serial and parallelized code are shown.
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Table 4. Observed wallclock times for the MHDLA code.

Execution time in minutes
Number of processors
N 1 4 9 16
807 1.7 0.7 - -
1607 | 12.2 4.3 2.9 2.5
3207 | 1141 385 205 14.1

Table 4 shows that greatly reduced wallclock times can be achieved in this
application by only parallelizing the eigenvalue solver. As expected, the parallel
speedup is low. This is because there is another routine with linear algebra com-
putations that needs to be parallelized whose wallclock time becomes significant as
the size of the problem increases. Since this part of the code is serial, it limits the
speedup that can be achieved and lowers the parallel efficiency as processors are
added. This limitation is an instance of Amdahl’s Law.

6 Concluding Remarks

A new parallel complex Schur decomposition routine PZLAHQR has been implemented
based on the ScaLAPACK code PDLAHQR. Results were shown for PZLAHQR and
showed that this routine scales nicely with the number of processors. Several auxil-
iary subroutines were developed to support this routine that will be useful outside
the scope of PZLAHQR.

In addition, a parallel eigenvector calculation routine PZTREVC was developed
for complex upper triangular matrices. Also, a new version of PZLATRS was devel-
oped that uses scaling to control potential overflow. However, PZLATRS requires
further work to improve its scalability.

Two application codes were also parallelized using ScaLAPACK and the new
solvers presented here. In each case, significantly decreased wallclock times were
observed. Since each code was relatively small on the order of 2000 lines, it only
took a couple of days worth of work to implement the parallelization. This time will
be recouped by the savings in wallclock time many times over as the researchers do
much larger problems.
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